翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

glass cockpit : ウィキペディア英語版
glass cockpit

A glass cockpit is an aircraft cockpit that features electronic (digital) flight instrument displays, typically large LCD screens, rather than the traditional style of analog dials and gauges. While a traditional cockpit (nicknamed as a "steam cockpit" within aviation circles) relies on numerous mechanical gauges to display information, a glass cockpit uses several displays driven by flight management systems, that can be adjusted (multi-function display) to display flight information as needed. This simplifies aircraft operation and navigation and allows pilots to focus only on the most pertinent information. They are also popular with airline companies as they usually eliminate the need for a flight engineer, saving costs. In recent years the technology has become widely available in small aircraft.
As aircraft displays have modernized, the sensors that feed them have modernized as well. Traditional gyroscopic flight instruments have been replaced by electronic Attitude and Heading Reference Systems (AHRS) and Air Data Computers (ADCs), improving reliability and reducing cost and maintenance. GPS receivers are usually integrated into glass cockpits.
Early glass cockpits, found in the McDonnell Douglas MD-80/90, Boeing 737 Classic, 757 and 767-200/-300, ATR 42, ATR 72 and in the Airbus A300-600 and A310, used Electronic Flight Instrument Systems (EFIS) to display attitude and navigational information only, with traditional mechanical gauges retained for airspeed, altitude, vertical speed, and engine performance. Later glass cockpits, found in the Boeing 737NG, 747-400, 767-400, 777, A320 and later Airbuses, Ilyushin Il-96 and Tupolev Tu-204 have completely replaced the mechanical gauges and warning lights in previous generations of aircraft, although they still retain some analog instruments as backups in case the EFIS displays malfunction.
== History ==

Glass cockpits originated in military aircraft in the late 1960s and early 1970s; an early example is the Mark II avionics of the F-111D (first ordered in 1967, delivered from 1970–73), which featured a multi-function display.
Prior to the 1970s, air transport operations were not considered sufficiently demanding to require advanced equipment like electronic flight displays. Also, computer technology was not at a level where sufficiently light and powerful circuits were available. The increasing complexity of transport aircraft, the advent of digital systems and the growing air traffic congestion around airports began to change that.
The average transport aircraft in the mid-1970s had more than one hundred cockpit instruments and controls, and the primary flight instruments were already crowded with indicators, crossbars, and symbols, and the growing number of cockpit elements were competing for cockpit space and pilot attention.〔 As a result, NASA conducted research on displays that could process the raw aircraft system and flight data into an integrated, easily understood picture of the flight situation, culminating in a series of flights demonstrating a full glass cockpit system.
The success of the NASA-led glass cockpit work is reflected in the total acceptance of electronic flight displays beginning with the introduction of the MD-80 in 1979. Airlines and their passengers alike have benefited. The safety and efficiency of flights has been increased with improved pilot understanding of the aircraft's situation relative to its environment (or "situational awareness").
By the end of the 1990s, liquid-crystal display (LCD) panels were increasingly favored among aircraft manufacturers because of their efficiency, reliability and legibility. Earlier LCD panels suffered from poor legibility at some viewing angles and poor response times, making them unsuitable for aviation. Modern aircraft such as the Boeing 737 Next Generation, 777, 717, 747-400ER, 747-8F 767-400ER, 747-8, and 787, Airbus A320 family (later versions), A330 (later versions), A340-500/600, A340-300 (later versions), A380 and A350 are fitted with glass cockpits consisting of LCD units.〔
The glass cockpit has become standard equipment in airliners, business jets, and military aircraft. It was fitted into NASA's Space Shuttle orbiters ''Atlantis'', ''Columbia'', ''Discovery'', and ''Endeavour'', and the current Russian Soyuz TMA model spacecraft that was launched in 2002. By the end of the century glass cockpits began appearing in general aviation aircraft as well. In 2003, Cirrus Design's SR20 and SR22 became the first light aircraft equipped with glass cockpits, which they made standard on all Cirrus aircraft. By 2005, even basic trainers like the Piper Cherokee and Cessna 172 were shipping with glass cockpits as options (which nearly all customers chose), as well as many modern aircraft such as the Diamond DA42 twin-engine travel and training aircraft. The Lockheed Martin F-35 Lightning II features a "panoramic cockpit display" touchscreen that replaces most of the switches and toggles found in an aircraft cockpit.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「glass cockpit」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.